If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+60x-351=0
a = 4; b = 60; c = -351;
Δ = b2-4ac
Δ = 602-4·4·(-351)
Δ = 9216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9216}=96$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-96}{2*4}=\frac{-156}{8} =-19+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+96}{2*4}=\frac{36}{8} =4+1/2 $
| -2x+4x/3-x/2-2=0 | | 4x/3-2x-x/2-2=0 | | (7+2x)3=3x+6 | | 551=4x^2+60x+200 | | 15.7+12.3x=18.2-7.7x15 | | 5+20=4x^2 | | 40+c=9+c | | -1^8f-3^4-1^4f=11 | | 0=4x^2+60x-351 | | 7x-7=2x-2 | | 6−x8=2 | | 7+3x/3=5 | | 4x/3-2(x+1)=x/2 | | 5(4a+8)=4a-40 | | 2x-12+3x=3 | | 7+19s-1=6s-126-2s | | (4x+6)÷2=3x-5 | | -5x+9=-4x+12 | | 9/2x+5=2 | | 20=4+2k | | 3/4p-7=15 | | -8(4-x)=-88 | | 7(t-2)+7t=7(2t+4)-9 | | 550=2x+6 | | 7x2+3x=5 | | 6g+4=(6g+4) | | 5n=155 | | (8+1/3x)+x+(8+1/3x)+x=196 | | -6(8x-3)=306 | | 5+20=4x2 | | 4a÷5=9 | | 30-5h=5 |